Learning Phenotype Specific Gene Network by Knowledge Driven Matrix Factorization
نویسندگان
چکیده
A popular method for reconstructing gene networks from micro-array data is Bayesian structure learning. However, most Bayesian structure learning algorithms suffer from three major shortcomings, i.e., the high computational cost, inefficiency in exploring qualitative knowledge, and inability of reconstructing phenotype specific gene network. We address these three short-comings by presenting a new framework, which first identifies the genes relevant to the given phenotype using a mixture regression model, and then reconstructs the network for the selected genes with a Knowledge driven Matrix Factorization (KMF) algorithm. We applied the proposed framework to gene expression and phenotypic data and identified highly enriched gene clusters with distinct cellular functions and processes together with the interactions between the clusters. Most of the interactions predicted by KMF were indeed biologically relevant. In summary, we have developed a framework that can correctly reconstruct the gene network that is specific to a given phenotype.
منابع مشابه
Reconstruct modular phenotype-specific gene networks by knowledge-driven matrix factorization
MOTIVATION Reconstructing gene networks from microarray data has provided mechanistic information on cellular processes. A popular structure learning method, Bayesian network inference, has been used to determine network topology despite its shortcomings, i.e. the high-computational cost when analyzing a large number of genes and the inefficiency in exploiting prior knowledge, such as the co-re...
متن کاملUsing Knowledge Driven Matrix Factorization to Reconstruct Modular Gene Regulatory Network
Reconstructing gene networks frommicro-array data can provide information on the mechanisms that govern cellular processes. Numerous studies have been devoted to addressing this problem. A popular method is to view the gene network as a Bayesian inference network, and to apply structure learning methods to determine the topology of the gene network. There are, however, several shortcomings with...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملA social recommender system based on matrix factorization considering dynamics of user preferences
With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007